A general definition of malware - Examples
(©2011 by Roland Fuchsberger
July 6, 2011

Abstract

This paper tries to build up examples to a general definition of malware proposed
by Simon Kramer and Julian C. Bradfield [1]. All the definitions in this paper are
from that article. The goal is to help the reader understand the formal definitions
by applying them to intuitive examples.

1 Introduction

The aim of the general definition of malware is to classify interacting software-
components of a software-systems into the following categories:

- Malware: software causing incorrectness
- Benware: from benign software - opposite of malware

- Antimalware: ”antibodies” against malware
- Medware: medical software - software repairing incorrect software

This approach is relaying on a definition of correctness and is building up definitions
for these categories by a modal fixpoint logic.

2 Basic Concepts

To identify software that is causing incorrectness we need 2 basic concepts: First
we need to introduce a predicate correct(s), to identify correct working software
components and not correct working systems. Secondly, we need to model the
interaction between components in a software system. Therefore we take the concept
of functional application

3 Hammer-Example

One real-world example would be a simple hammer that is smashing a window by a
hit. To model this example we introduce a set of systems J, the predicate correct(s),
where s € ¢, and the functional application C 9 x 9 — 4.

¥ := {hammer, tinyHammer, twiceTinyhammer, window, smashedWindow}

correct(s) := s € {hammer, tinyHammer, twiceTinyhammer, window}
hammer(window) = smashedWindow
tinyHammer(tinyHammer) = twiceTinyHammer
twiceTinyHammer(window) = smashedWindow

Now we have defined our system, the possible interactions and the correct compo-
nents. The only possible interaction is the application of the hammer to the window
(by a hit on the window). The outcome is a smashed Window. Notice that the cor-
rect window becomes a not correct smashed Window by appying the hammer to it.
The application of tinyHammer to tinyHammer is a way to model a tinyHammer
that needs two hits to smash a window.

(tinyHammer(tinyHammer))window = smashed Window

4 Definition of damaging/repairing software

The next step to a general definition of malware, benware, medware and anti-
malware is to define damaging and repairing software.
4.1 Damaging software

Damaging a software is the causation of incorrectness of a priori correct software
via functional application. Formaly,

s damages s’ :iff correct(s’) and not correct(s(s’))
s damages’ ' :iff s damages s’
s damages™*! s’ :iff there is s” s.t.
not s” damages® s’ and
s(s”) damages™ s’
o / .3 n o/
s damages® ' :iff J, .y s damages” s

2

s damages®s’ expresses damaging a software s’ in any abitrary steps.

4.1.1 Hammer-bomb example

In the hammer-example the tinyHammer is damaging the window in step 1 (be-
ginning with 0). Therefor tinyHammer damages window does not hold, whereas
tinyHammer damages® window.

Now think of a detonator, a bomb and a house:

¥ := {detonator, bomb, bombWithDetonator, house, destroyedHouse}

correct(s) := s € {detonator, bomb, bombWithDetonator, house}
detonator(bomb) = bombWithDetonator
bombWithDetonator(house) = destroyedHouse

Notice, that detonator damages® house evaluates to true, but bomb damages® house
to false. This represents that a bomb without a detonator does not damage anything.
But a detonator in an environment where a bomb is present can destroy a house.

4.2 Repairing software

Repairing software is the contrary to damaging - not the contradictory (via nega-
tion).

s repairs ' :iff not correct(s’) and correct(s(s’))
s repairs’ s' :iff s repairs s’
s repairs"t! s/ :iff there is s” s.t.
not s” repairs® s’ and
s(s") repairs™ s
s repairs® s :iff | J, .y s repairs” s’

5 Definition of Malware Logic

Excerpt from [I].
Let o designate a countable set of propositional variables M, and let

©3¢u=M|[-¢|pAd | VD(9) | VR()) | 2M(¢)

designate the language ® of MalL.og. Then, given the (or only some finite or infinite
sub-)class ¢ of software systems s (not just pieces of software), and an interpreta-
tion [] : M — 27 of propositional variables, the interpretation || - |7 : ® — 2V of
MalLog-propositions is:

[Mllgy = [M]
I=éllpp = 9\ ¢l
oAl = lelipy N llellpg
IVD(9)|17 = {s €| forall s, if s damages® s’
then s" € [|8]|f}
IVR(¢)|[pp = {s €| for all &, if s repairs® s’
then s’ € ||g25||“}
oM (@)lrp == ULS SIS C ol s}

where [-](ps) maps M to S and otherwise agrees with [-].

Further, ¢V ¢' := =(=¢pA=¢), T := V-0, L:==T, 0 = ¢ =0V, ¢ ¢ =
(6 = A — 6),3D(4) == =¥D(~¢), IR($) := =¥R(~¢), and, notably, uM(¢) :=
~oM (~¢(=M)). Finally,

-sevand ¢ € @, s = ¢ iff s € |||y

- forall p € = ¢ :iff for all s € 9, s = ¢

- for all ¢,¢' € @,
- ¢= ¢ :iff for all s € 9, if s = ¢ then s = ¢/
-9 ¢ iff o= ¢ and ¢ = ¢.

We pronounce VD(¢) as "necessarily through damage that ¢”, VR(¢) as "necessarily
through repair that ¢”, 3D(¢) as "possibly through damage that ¢” and JR(¢) as
"possibly through repair that ¢”, vM(¢) as "the greatest fixpoint of the property
M such that ¢”, uM(¢) as "the least fixpoint of the property M such that ¢”, s = ¢
as ”s satisfies ¢, |= ¢ as "¢ is valid”, ¢ = ¢’ as ¢ is a logical consequence of ¢”,
and ¢ < ¢ as "¢ is logically equivalent to ¢'”.

5.1 MalLog applied to a modified Hammer-Example

To become a feeling for the definitions, we at first look at the modal operators and
secondly at the fixpoint operators by evaluating formulas. Therefor we first modify
a little bit the hammer-example: Think of a hammer, a fire, a regular window and

4

an extreme durable window. The extreme durable window could only be destroyed
by the fire, but not by the hammer. Formally,

¢ := {fire, hammer, window, durableWindow, destroyedWindow }

correct(s) := s € {fire, hammer, window, durableWindow}
fire(window) = destroyed Window
hammer(window) = destroyed Window

fire(durableWindow) = destroyed Window

5.1.1 The damages® relation

fire durableWindow

s

hammer window

5.1.2 The interpretation || ||

For a correct typeset of the formulas we need to specify a set of propositional vari-
ables M and a relation M +— 27, This could be usefully for example to unite several
software components to on subsystem. For example we could define a propositional
variable _badTools and map _badTools to fire and hammer. To satisfy the type-
system and for simplicity we define for every s € 1 one propositional variable M
and map them together. Formally,

M = {_fire, hammer, badTools, _window, _durableWindow, _destroyed Window }

[-] == {(fire, fire), (-hammer, hammer), (_badTools, hammer), (_badTools, fire),
(_window, window), (-durableWindow, durableWindow),
(_destroyedWindow, destroyedWindow)}.

For Instance, [-badTools] = {hammer, fire}.

5.1.3 The modal operator VD

VD(0) = {durableWindow, window, destroyed Window }

For a better understanding take a look at the damages® relation: Notice that VD(()
always evaluates to a set containing those elements that (informally) do not stand
on the left side of the relation.

Here are some additional examples:

VD ({_window}) = {durableWindow, window, destroyed Window, hammer}
VD ({_window, _durableWindow}) = {durableWindow, window, destroyedWindow, hammer, , fire}

5.1.4 The greatest-fixpoint operator vM(¢)

Let ¥ :={a,b,c} and R C ¥ x 9 such that:

a — a
N\
b —
/
C

b

Let f(X):={m €9 | Jpex : tRmM}.
For Instance, f({a}) = {a,b} and f({b}) = {b}.
X is a fixpoint of f(X) :iff f(X) = X.
In our example, we can find two fixpoints: {b} (because f({b}) = {b}) and {a,

b} (because f({a,b}) = {a,b}). The greatest fixpoint is the one fixpoint with the
greatest cardinality. Formally, oM (f(M)) = {a, b}.

6 Formal definition of malware

mal(s) :iff s = oM (ID(VD(M))
By expanding the definitions:
mal(s) :iff s = oM ({s € ¥ | 3¢ : (s damages’s’ AV : s'damages’s” — s” € M)})

With this definition we are finally able to identify the malware in our examples. The
reader is invited to apply this definition to the previous examples. In this section we
apply the definition to two more interesting examples. As the definition for malware
just relies on the damages® relation, it is also possible to directly define this relations
and the set of software systems .

6.1 Paper-scissor-stone

¥ :={paper, scissor, stone}
s damages®s’ :=

paper

[\

scissor «——— stone

Applying the definition, the greatest fixpoint of our system is {paper, scissor, stone
}. This means, that everything in this system is a malware.
6.2 Program-Virus-Antivirus

Imagine a computervirus that is damaging a computerprogram and a antivirus that
is damaging that virus.

¥ := {program, virus, antivirus}

s damages°®s’ :=

virus

program antivirus

Again, applying the definition of malware, we came up that only the virus is a
malware. Software that is damaging a malware is a benware.

7 Formal definition of benware, medware and anti-
malware

ben(s) :iff sk pM(VD(ID(M)))

antimal(s) :iff s = —-ID(BEN) and there is s’ s.t. mal(s’)
and not mal(s(s’)),
where BEN := M (VD(3D(M)))

med(s) :iff s} —-3ID(BEN) A JR(BEN)

For more details on that definitions, please look them up in the original paper [1].

8 Conclusion

"Three major advantages of our approach are: generality, genericity, and safety - all
thanks to abstractness. Our approach is general and safe because it focuses on what
malware effects but abstracts from how malware actually and potentially does so. In
particular, our approach is hacker-safe in the sense that it does not enable hackers
to derive recipes for how to actually construct malware. Our approach is generic
in the sense that different generations of MalLog (and thus malware classifications)
can be obtained by redefinitions of damages® and repairs®.” [I]

References

[1] Simon Kramer and Julian Bradfield. A general definition of malware. Journal
in Computer Virology, 6:105-114, 2010. 10.1007/s11416-009-0137-1.

	Introduction
	Basic Concepts
	Hammer-Example
	Definition of damaging/repairing software
	Damaging software
	Hammer-bomb example

	Repairing software

	Definition of Malware Logic
	MalLog applied to a modified Hammer-Example
	The damages relation
	The interpretation "026B30D "026B30D "464A671 "564B679
	The modal operator D
	The greatest-fixpoint operator vM()

	Formal definition of malware
	Paper-scissor-stone
	Program-Virus-Antivirus

	Formal definition of benware, medware and anti-malware
	Conclusion

